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Multilevel Parallelization Models in CFD

Suchuan Dong* and George Em Karniadakis†

Brown University, Providence, Rhode Island 02912

We present two multilevel parallel models based on MPI/MPI (MPI denoting Message
Passing Interface) and MPI/OpenMP (OpenMP denoting Open Multi-Processing) for high-
order CFD methods and compare their performances. These models are implemented within
the spectral/hp element framework to take advantage of the hierarchical structures arising
from deterministic and stochastic CFD computations. For MPI/MPI, we employ MPI
process groups to decompose the computations into different levels. For MPI/OpenMP, we
take a Single-Program-Multiple-Data (SPMD) style approach to OpenMP shared memory
parallelism that significantly reduces the OpenMP synchronizations. These models
demonstrate a good scalability with respect to the problem size and a good speedup for fixed
problem sizes. With identical configurations, the MPI/MPI parallel model is observed to be
generally more efficient. The advantage of these multilevel approaches lies in that they
reduce the number of processes participating in each communication and the latency
overhead, and thus enable the applications to scale to a large number of processors more
efficiently. The models have been applied to the direct simulation of turbulent flows past a
circular cylinder at Reynolds number Re=10,000.

 I. Multilevel Parallelism
ULTILEVEL parallelism has been motivated by the performance limitations demonstrated in single-level
parallel computations that prevent effective scaling to a large number of processors on modern

supercomputers.1 It can potentially exploit the hierarchical structures inherent in modern high-performance computer
architectures and a range of applications more effectively.

Most modern high-performance computers utilize distributed memory architecture for scalable performance.
However, manufacturers often incorporate shared-memory parallelism at the node level to address issues of cost-
effective packaging and power. As a result, most platforms, including the top ten supercomputers in the world (of
the present time), are essentially clusters of shared-memory multiprocessors (SMP). A challenge presented to
application developers is the hierarchical parallelism with increasingly complex non-uniform memory access
exhibited by such machines. Flat message-passing paradigm has been the dominant model on these architectures.
However, a multilevel parallelization approach.2-4 through pure message passing or by combining message-passing
and shared memory parallelism would be a more natural alternative for these architectures.5

Hybrid parallelism employing MPI/threads has been studied for kernel calculations,6 simplified model problems7

and more complex applications,5,8,9 with both loop- and subroutine-level shared memory parallelism,7,9,10 and coarse
grain shared memory parallelism.5,8,11 These studies indicate that the thread management overhead is an important
factor affecting the performance of hybrid applications. The employment of a large number of threads within the
SMP node also impacts negatively the performance due to the memory bandwidth contention amongst multiple
threads.5

Multilevel parallelism using MPI was previously applied to optimization problems.1,3 In the current work, we
employ an MPI multilevel parallelization approach to high-order CFD methods within the spectral/hp element
framework, and compare its performance with MPI/OpenMP hybrid parallelism.5 Numerical simulations employing
high-order methods can particularly benefit from multilevel parallelism as increasing the problem size by using
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higher spectral orders (P-type refinement) will localize the work which can then be computed efficiently at a
different level.

 II. Hierarchical Structures in High-Order CFD Computations
High-order deterministic and stochastic CFD computations demonstrate inherent hierarchical structures when the

problem is discretized with the spectral/hp element method.12

Specifically, hierarchical structures arise from the stochastic CFD computations using generalized polynomial
chaos.13 The key idea of polynomial chaos is to represent stochasticity spectrally with polynomial functionals, first
introduced by Wiener for Gaussian random processes. The randomness is absorbed by a suitable orthogonal basis
function from the Askey family of polynomials.13 Subsequently, the Navier-Stokes equation is projected onto the
space spanned by the same orthogonal polynomial functions, and a set of deterministic differential equations results.
As a result, the Navier-Stokes equations are reduced to a set of equations for the expansion coefficients (called
random modes), which are three-dimensional deterministic functions of both space and time. The random modes are
de-coupled from one another (except in the non-linear terms) and are solved with the spectral/hp element method.12

Computations of the random modes, sub-domains of each random mode, spectral elements within the sub-domain,
and at the sub-element level form the hierarchy of operations in the stochastic CFD computations.

Deterministic CFD computations for Vortex-Induced Vibrations (VIV) demonstrate similar hierarchical
structures, for example, the flow past a flexible cylinder subject to VIV (Refs. 14,15). For the VIV problem the flow
velocity is represented by

€ 

u(x, y,z, t) = ˆ u k
*

k
∑ (x, y, t)eikz

This representation applies to three-dimensional unsteady flow problems on geometries with one homogeneous
direction while the non-homogeneous two-dimensional domain is arbitrarily complex. A combined spectral element-
Fourier discretization12 can be employed to accommodate the requirements of high-order as well as the efficient
handling of multiply-connected computational domain in the non-homogeneous planes. Spectral expansions in the
homogeneous direction involve Fourier modes that are decoupled from one another (except in nonlinear terms) and
can be solved with the spectral element approach. Computations of the Fourier modes, spectral element plane,
spectral elements within the plane, and at the sub-element level form the hierarchy of operations in the solution
process of VIV simulations.

The inherent hierarchical structures in high-order CFD computations suggest a multi-level strategy to
parallelization. At the top-most level are groups of MPI processes. Each group computes one or more random mode.
At the next level, the three-dimensional domain of each random mode is decomposed into sub-domains, each
consisting of spectral elements. Each MPI process within the group computes one sub-domain. At the third level,
multiple threads are employed to share the computations within the sub-domain (or MPI process). Compared with
the flat message-passing model on the same number of processors, this multilevel parallelization strategy reduces
the network latency overhead because a greatly reduced number of processes are involved in the communications at
each level. This enables the applications to scale to a large number of processors more efficiently.

To exploit the hierarchical structures arising from spectral/hp element CFD computations, we developed a hybrid
parallelism with MPI/OpenMP.5 The main idea is to use MPI for domain decomposition in the homogeneous
direction and use OpenMP threads for the computations in the non-homogeneous spectral element planes. The
hybrid MPI/OpenMP approach has been shown to perform better than both MPI (single-level) and OpenMP on SGI
Origin and Intel IA64 platforms.5 In this paper we present an MPI/MPI two-level parallelization approach for the
spectral/hp element method. We employ MPI for domain decomposition in the homogeneous direction (first level).
In the non-homogeneous spectral element planes (second level), we parallelize the computations further employing
MPI in conjunction with a graph-partitioning algorithm.16 This MPI/MPI two-level parallelization model, together
with the MPI/OpenMP hybrid approach, not only eliminates the performance restrictions in the single-level MPI
computations,17-19 but also improves the efficiency in exploiting a large number of processors. The objectives of this
paper are to present these two multilevel parallelization paradigms, investigate their influence on p-type refinement
in high-order methods, and compare their performance.

 III. MPI/MPI Two-Level Parallelism
Figure 1a provides a schematic for the MPI/MPI two-level parallel paradigm. The flow domain is decomposed

along the homogeneous direction first. Each sub-domain consists of two or more non-homogeneous spectral element
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planes, corresponding to one or more Fourier modes. At the top level are groups of MPI processes. Each group
computes one sub-domain in the homogeneous (Fourier) direction. The non-homogeneous spectral element planes
are further decomposed into sub-domains at the second level. Each of these sub-domains comprises a number of
structured or un-structured spectral elements. Correspondingly, each MPI process within the group computes one
sub-domain at the second level.

We employ MPI communicators/groups to map the flow sub-domains onto MPI processes. Consider the
configuration of Nz flow sub-domains in the homogeneous direction at the first level and Nxy sub-domains in spectral
element planes at the second level. The initial communicator is split into two sets of disjoint process sub-
groups/communicators. In the first set, the partition of MPI processes is along the homogeneous direction, and
correspondingly Nz disjoint sub-groups/communicators are created. Each of these communicators contains Nxy MPI
processes, and provides the context for communications in the spectral element planes (second level). In the second
set, the partition of MPI processes is in the spectral element planes, and correspondingly Nxy disjoint sub-
groups/communicators are created. Each of them contains Nz MPI processes, and provides the context for
communications in the homogeneous direction (first level).

Distinct communication patterns appear at these two levels, and dominate different stages of the computation.
The dominant pattern at the first level is all to all communication for transposing the distributed matrices18 when an
FFT is evaluated. These operations occur when the non-linear terms and the velocity divergence are computed in the
Navier-Stokes equations. At the second level, the reduction operations dominate the communications for evaluating
the inner products in the conjugate gradient iterative solver. These occur in the Poisson solve for the pressure and
the Helmholtz solve for the velocity. The communications on these two levels take place at different stages during
the computation, and alternate as the simulation marches in time. A high-order stiffly stable time integration scheme
is employed20 consisting of three stages: 1) non-linear term evaluation, 2) pressure solve, and 3) viscous solve. The
communications at the first level occur at stage 1 in evaluating the non-linear terms and computing and at stage 2 in
calculating the right-hand-side of the Poisson’s equation for the pressure. The communications at the second level
occur at stages 2 and 3 in the iterative solutions of the Poisson’s equation for pressure and of the Helmholtz equation
for velocity.

a) b)
Fig. 1  Schematic showing a) MPI/MPI two-level parallelism and b) MPI/Open MP hybrid parallelism.

 IV. MPI/OpenMP Hybrid Parallelism
Figure 1b provides a schematic for the MPI/OpenMP hybrid paradigm. The flow domain is again decomposed

along the homogeneous z-direction. At the outer level multiple MPI processes are utilized with each process
computing one sub-domain. At the inner level, within each sub-domain multiple OpenMP threads conduct the
computations in parallel. Data exchange across sub-domains is implemented with MPI. Within the sub-domain,
access to shared objects by multiple threads is coordinated with OpenMP synchronizations. We take an SPMD-style
approach to OpenMP shared memory parallelism that greatly reduces the OpenMP barriers.5

Specifically, a single parallel region is placed at the topmost level. This avoids the overhead associated with
frequent thread creations and destructions inherent in fine grain computations. OpenMP threads work on disjoint
groups of elements or disjoint sections of the vectors (of roughly equal size). The vector length, the element number,
and the number of entries in the linked list are split based on the number of threads. This computation is done only
once at the pre-processing stage, and the results are stored in a shared table. This configuration avoids the
synchronization overhead associated with dynamic scheduling. Working on a large section of a vector with
contiguous memory rather than a strided one (as with dynamic scheduling) improves the cache-hit rate. The MPI



DONG AND KARNIADAKIS

259

calls are handled by only one thread within each process. Advantageous over single-level pure MPI programs on
SMP nodes, this configuration assembles the nodal messages into a single one and thus reduces the network latency
overhead. Barriers are the main OpenMP synchronizations. The majority of OpenMP barriers occur at the switching
points between global and local operations. We have developed a consistent workload-splitting scheme across local
and global operations that eliminate the majority of OpenMP barriers.5

 V. Simulation Results
We apply the MPI/MPI parallel model to simulate the turbulent flow past a long stationary circular cylinder at

the Reynolds number Re = 10,000 based on the inflow velocity and the cylinder diameter. A “z-slice” of the
computational domain in the x - y plane consists of 6272 triangular spectral elements (Fig. 2). In the homogeneous z-
direction a maximum of 64 Fourier modes (or 128 spectral element planes) are employed. The flow domain extends
from –20D (where D is cylinder diameter) at the inlet and to 50D at the outlet, and from –20D to 20D in the cross-
flow direction. The spanwise length of the domain is fixed at Lz/D = !. A uniform flow is prescribed at the inlet.
Neumann boundary conditions are applied at the outlet. Periodic boundary conditions are used in the cross-flow
direction as well as in the homogeneous direction.

Fig. 2  Mesh in the x – y plane with 6272 triangular elements in the simulation.

In the MPI/MPI two-level parallel simulations we divide MPI processes into a number of groups based on the
number of Fourier modes in homogeneous direction (first level) such that each group computes one Fourier mode.
At the second level, we deploy 8 MPI processes in each group for the current problem size. Correspondingly, the
mesh in the spectral element planes is partitioned into 8 sub-domains, and each MPI process in the group computes
one partition of the mesh.

We vary the grid resolution by changing the number of Fourier modes in the homogeneous direction and the
order of spectral elements in the non-homogeneous planes. Table 1 lists the wall timing for various problem sizes
collected on the Compaq Alpha Cluster at PSC. As the problem size increases only a slight increase in wall time is
observed as the number of processors is increased in proportion, indicating a good scaling of the MPI/MPI parallel
model with respect to problem sizes. Table 2 lists the drag coefficient, Strouhal number and the base pressure
coefficient from the simulations, together with their experimental values. The computed values are in good
agreement with the measured values from the experiments. Figure 3 shows the signals of the drag and lift
coefficients on the cylinder with 64 Fourier modes in the homogeneous direction and 5-th order spectral elements in
the spectral element planes. In Fig. 4 we plot the contours of the streamwise mean velocity (top row) and rms
velocity (bottom row) from the simulations (left column) and from the PIV experiment by Salim and Rockwell21

(right column). The simulation has produced the same distributions for the mean and rms velocities as the
experiment.
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Table 1 Wall timing vs problem sizes for cylinder flow at Re = 10,000 on the Compaq Alpha Cluster at PSC.
“DOF” denotes the total degrees of freedom of the system.

Fourier Modes Elements Spectral Order DOF (million) Processors Wall time/step (s)
2 6272 5 2.1 16 0.83
8 6272 5 8.5 64 1.04
16 6272 5 17 128 1.15
32 6272 5 33.9 256 1.21
64 6272 5 67.7 512 1.54

Table 2 Flow quantities of turbulent flow past a cylinder at Re = 10,000: CD, drag coefficient; St, Strouhal
number; 

€ 

−CPb , base pressure coefficient; P, spectral element order; M: number of Fourier modes.

CD St

€ 

−CPb
DNS (P=5, M=8) 1.155 0.195 1.129
DNS (P=5, M=32) 1.110 0.209 1.084
DNS (P=5, M=64) 1.128 0.205 1.171
Bishop and Hassan22 --- 0.201 ---
Gopalkrishnan23 1.186 0.193 ---
Williamson24 --- --- 1.112
Norberg25 --- 0.202 ---

a) b)
Fig. 3  Cylinder flow at Re = 10,000: time history of a) drag coefficient and b) lift coefficient.

 VI. Performance Results
We next examine the performance of the MPI/MPI model more systematically with a three-dimensional

turbulent flow past a cylinder at Reynolds number Re = 500 based on the inflow velocity and the cylinder diameter.
We choose this Reynolds number and the other flow parameters in accordance with Ref. 5 for the purpose of
comparison with MPI/OpenMP hybrid parallelization. We employ 16 Fourier modes (i.e. 32 spectral element
planes) in z-direction, and a mesh of 412 triangular elements in each spectral element x - y plane.

Two groups of tests are considered on three platforms: Intel IA64 Cluster at NCSA (800MHz Itanium), IBM SP3
at SDSC (375 MHz Power3) and Compaq Alpha Cluster at PSC (1GHz EV68). The first group is to examine the
scaling with respect to the total number of processors for a fixed problem size. A fixed spectral polynomial order of
Norder is used. The number of MPI processes or process groups in the homogeneous direction is varied from 1
through 16. The number of processors in the spectral element plane (for MPI/MPI) is varied between 1 and 4 on SP3
and Compaq machine and between 1 and 2 on IA64 cluster. The number of OpenMP threads per process (for
MPI/OpenMP) is varied in a similar fashion. Table 3 summarizes the configurations of the tested cases on all three
platforms. The second test group is to check the scalability with respect to the problem size. The same mesh as in the
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first group is used while the polynomial order and the number of processors in the spectral element plane (for
MPI/MPI) or the number of threads per process (for MPI/OpenMP) are varied.

Table 3 Configurations of tested cases. Table shows the platforms of a configuration (number of processors at
first and second levels) is tested on. SDSC SP3, PSC Alpha, and NCSA IA64 are denoted by the letters S, A,
and I respectively.

First Level (MPI processes or process groups)
1 2 4 8 16

1 S/A/I S/A/I S/A/I S/A/I S/A/I
2 S/A/I --- --- --- S/A/I

Second Level
(MPI processes or
OpenMP threads) 4 S/A --- --- --- S/A

a) b)

c) d)

Fig. 4  Comparison between simulation and PIV (Ref. 21) of cylinder flow at Re = 10,000: a) mean streamwise
velocity from simulation and b) from PIV; c) streamwise rms velocity from simulation and d) from PIV. PIV
plots courtesy of D. Rockwell (Ref. 21).

A. Test Group One: Fixed Problem Size
In Fig. 5 we compare the performance of MPI/MPI parallelism and MPI/OpenMP hybrid parallelism on the IA64

cluster at NCSA. Three configurations are tested for each model. For MPI/MPI, in the first configuration (denoted
“Z-Decomposition”) we decompose the flow domain only at the first level (in z-direction), with no decomposition in
the spectral element x - y plane. In the second configuration (denoted “XY-Decomposition”), we decompose the
spectral element x - y planes into sub-domains at the second level, with no decomposition in the homogeneous
direction. In the third configuration (denoted “Mixed Configuration”), the flow domain is decomposed at both the
first and the second levels. The first configuration corresponds to the original single-level MPI parallelization in
which only one processor computes in the spectral element planes. With the second and third configurations
multiple processors share the computations in the spectral element planes. For MPI/OpenMP we test three similar
configurations. In the first configuration (“pure MPI”) the flow domain is decomposed in homogeneous z direction,
while only one OpenMP thread per MPI process computes in each sub-domain. In the second configuration (“pure
OpenMP”), no domain decomposition is performed (only one MPI process), while multiple OpenMP threads share
the computations. In the third configuration (“hybrid”), multiple MPI processes are employed at the first level and
multiple OpenMP threads per process are deployed to split the workload in the spectral element planes.
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Figure 5a shows the wall clock time per step for the three configurations as a function of the total number of
processors for MPI/MPI, and the speedup factor, Sp, is shown in Fig. 5c. As the number of partitions increases at the
first level we observe a near-linear speedup, indicating that this configuration is an efficient decomposition
algorithm. The disadvantage of the first configuration is that the number of Fourier modes imposes an upper bound
on the number of partitions (and hence the number of processors) in the homogeneous direction. Domain
decomposition only in the non-homogeneous spectral element planes (second configuration) produces better wall
clock timings and a super linear speedup for up to 8 processors, pointing to the effect of increased aggregate cache
size and improved cache reuse. The scaling deteriorates as the number of partitions in the spectral element planes
increases further to 16. This is attributed to the relatively small problem size and the load imbalance in different sub-
domains. The load imbalance problem does not exist for the domain decomposition in the homogeneous direction.
In the spectral element planes the mesh partition can produce load imbalance across sub-domains, although this
problem is minimized with METIS.16 The impact of load imbalance becomes greater as the number of sub-domains
increases and the size of each sub-domain decreases. In the third configuration, we decompose the flow domain to
the maximum extent at the first level (i.e., 16 for current problem) and vary the number of sub-domains at the
second level. As the number of sub-domains in the spectral element planes increases, a super-linear speedup is
observed, which is due to the cache effect.

Figure 5b shows the wall timings for MPI/OpenMP hybrid parallelism. The corresponding parallel speedup
factors are plotted in Fig. 5d. Pure MPI configuration demonstrates a near-linear speedup. The pure OpenMP run
with two threads shows a super-linear speedup, with a wall-clock time lower than the pure MPI run with two
processes. The hybrid run (with 16 MPI processes and 2 threads per process) demonstrates a scaling comparable to
pure MPI. Comparison of the wall clock timings between MPI/MPI and MPI/OpenMP indicates that the former is
slightly better than the latter.

a) b)

c) d)
Fig. 5  IA64 Cluster (NCSA): Wall time/step with a) MPI/MPI and b) MPI/Open MP models vs processors;
and parallel speedup with a) MPI/MPI and d) MPI/Open MPI models vs processors. Symbols: “z16xy2”: 16
sub-domains in z-direction and 2 sub-domains in x-y planes; “2T”: 2 Open MP threads per MPI process;
“8Pr”: 8 MPI processes.

Figure 6 shows the wall time (top row) and the speed-up factor (bottom row) with respect to the number of
processors for MPI/MPI (left column) and MPI/OpenMP (right column) on the IBM SP3 at SDSC. Domain
decomposition at the first level results in a linear scaling almost comparable to the ideal speedup. Partition of the
flow domain at the second level produces a scaling slightly better than that at the first level. In the third
configuration with 16 sub-domains in the homogeneous direction, increasing the number of partitions in the spectral
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element planes to 2 results in a linear speedup. Increasing the number of partitions further to 4 results in a speedup
factor that slightly deteriorates. Figures 6b and 6d show the wall timings and speedup factors for MPI/OpenMP.
Pure MPI runs produce a scaling the same as the ideal one. The pure OpenMP run shows a performance inferior to
the corresponding MPI run on the same number of processors. The hybrid runs demonstrate a good speedup as the
number of threads per process increases. Comparison of the corresponding MPI/MPI and MPI/OpenMP runs again
indicates that the MPI/MPI model results in a lower wall clock time and a higher parallel speedup.

In Fig. 7 we plot the wall clock time (top row) and parallel speedup (bottom row) with respect to the number of
processors for MPI/MPI (left column) and MPI/OpenMP (right column) on the Compaq Alpha cluster at PSC. We
observe a trend similar to that on the other platforms. For both models a linear speedup is observed as the number of
processors at the first level. For MPI/MPI, in the second configuration as the number of processors in the spectral
element planes increases a super-linear speedup is observed for up to 4 processors, which is due to increased
aggregate cache size. The third configuration also results a good scaling. For MPI/OpenMP, the pure OpenMP run
does not scale quite well while the pure MPI run and the hybrid run demonstrate a good scalability. Comparing the
wall clock timings for these two models for identical configurations indicates that MPI/MPI runs demonstrate a
superior performance to the MPI/OpenMP runs for this problem.

a) b)

c) d)
Fig. 6  IBM SP3 (SDSC): Wall time/step with a) MPI/MPI and b) MPI/Open MP models vs processors; and
parallel speedup with a) MPI/MPI and d) MPI/Open MPI models vs processors. Symbols: “z16xy2”: 16 sub-
domains in z-direction and 2 sub-domains in x-y planes; “2T”: 2 Open MP threads per MPI process; “8Pr”: 8
MPI processes.

B. Test Group Two: Variable Problem Size
Next we examine the scaling of these two models with respect to the problem size. We concentrate on the

scaling with respect to grid refinement in the non-homogeneous x - y plane through p-type refinement.
We use the same mesh as in test group one, while the order of elements is varied. The number of Fourier modes

in the homogeneous z-direction is fixed at 16, and correspondingly 16 MPI processes or process groups are
employed in the homogeneous direction for all the following cases. Three different problem sizes are tested
corresponding to the polynomial orders of 7, 10, and 13. For MPI/MPI, we first fix the number of processors in the
spectral element planes (second level) to one, and collect the wall timing results for all the problem sizes. Then, as
element order increases we increase the number of processors at the second level approximately in proportion to the
cost increase for the one-processor cases. For MPI/OpenMP, we first deploy one OpenMP thread per MPI process
and collect the timing data for all the orders. Then, as the problem size increases we increase the number of threads
per process approximately in proportion to the cost increase for the single-thread cases. Corresponding to the
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polynomial orders 7, 10 and 13 we employ 1, 2 and 4 processors in the spectral element planes for MPI/MPI and 1,
2 and 4 threads per process for MPI/OpenMP. The results for these cases are shown in Figs. 8, 9, and 10 for the
IA64 cluster, IBM SP3 and Compaq Alpha cluster, respectively. As the element order increases, the execution time
increases significantly for the runs with one processor at the second level (MPI/MPI) or with one thread per process
(MPI/OpenMP). When the number processors at the second level (for MPI/MPI) or the number of threads per
process (for MPI/OpenMP) is increased in proportion, the execution time increases only slightly as element order
increases, indicating that both parallelization models demonstrate a good scaling with respect to the problem size on
the three platforms.

a) b)

c) d)
Fig. 7  Compaq Alpha (PSC): Wall time/step with a) MPI/MPI and b) MPI/Open MP models vs processors;
and parallel speedup with a) MPI/MPI and d) MPI/Open MPI models vs processors. Symbols: “z16xy2”: 16
sub-domains in z-direction and 2 sub-domains in x-y planes; “2T”: 2 Open MP threads per MPI process;
“8Pr”: 8 MPI processes.

a) b)
Fig. 8  IA64 Cluster (NCSA): Wall time/step vs spectral element order for a) MPI/MPI and b) MPI/Open MP.
Dashed line: 1 processor at the second level; Solid line: multiple processors at the second level. Symbols:
“z16xy2”: 16 sub-domains in z-direction and 2 sub-domains in x-y planes; “2T”: 2 Open MP threads per MPI
process; “8Pr”: 8 MPI processes.
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a) b)
Fig. 9  IBM SP3 (SDSC): Wall time/step vs spectral element order for a) MPI/MPI and b) MPI/Open MP.
Dashed line: 1 processor at the second level; Solid line: multiple processors at the second level. Symbols:
“z16xy2”: 16 sub-domains in z-direction and 2 sub-domains in x-y planes; “2T”: 2 Open MP threads per MPI
process; “8Pr”: 8 MPI processes.

a) b)

Fig. 10  Compaq Alpha (PSC): Wall time/step vs spectral element order for a) MPI/MPI and b) MPI/Open
MP. Dashed line: 1 processor at the second level; Solid line: multiple processors at the second level. Symbols:
“z16xy2”: 16 sub-domains in z-direction and 2 sub-domains in x-y planes; “2T”: 2 Open MP threads per MPI
process; “8Pr”: 8 MPI processes.

a) b)
Fig. 11  a) Parallel speedup and b) parallel efficiency of the MPI/MPI model vs the number of processors on
PSC Compaq Alpha cluster for the flow past a cylinder at Reynolds number Re = 10,000 with a fixed problem
size of 300,000,000 degrees of freedom. Speedup is calculated based on the wall time on 256 processors.
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 VII. Summary and Conclusions
Multilevel parallelism can particularly benefit high-order numerical methods as increasing the problem size by

using higher spectral orders (P-refinement) will localize the work which can then be computed efficiently at a
different level. In this paper we have presented a new MPI/MPI two-level parallelization model for high-order
numerical methods within the spectral/hp element framework. Both MPI/MPI and MPI/OpenMP models can
effectively take advantage of the hierarchical structures inherent in high-order CFD computations. The simulation
results, obtained with the multilevel parallel algorithms for the flow past a cylinder at Re = 10,000, agree very well
with the experiments. We highlight the most important points from this study as follows:

1) The advantage of these multilevel parallel paradigms lies in that they facilitate the reduction of the number of
processes (or threads) participating in communications. In a single-level parallelism, for global reduction operations,
which is often encountered in iterative linear-equation solvers, and all-to-all operations, which is often encountered
in FFT-based applications, all processes are involved in the communications. In contrast, in the multilevel approach
processes (or threads) participate in communications at different levels; they communicate with the other processes
(or threads) at the same level. As a result, a greatly reduced number of processes are involved in each
communication. This reduces the communication latency overhead and enables the applications to scale to a large
number of processors more efficiently. We take the FFT computation of the three-dimensional flow data in the
MPI/MPI model and in a single-level MPI computation, in which the domain is decomposed with respect to the
Fourier modes, on the same number of processors to illustrate the above point. In MPI/MPI we employ Nz groups
(first level) with Nxy MPI processes (second level) in each group. The total number of processors in this computation
is Nz · N xy. Accordingly, in the single-level MPI computation we employ the same number of processors Nz · N xy.
Therefore, when the FFT is evaluated, in MPI/MPI Nz processors are involved in each all-to-all communication
while Nxy independent all-to-all communications (each involving different sets of Nz processors) proceed
simultaneously (overlap in time). In contrast, in the single-level MPI computation all  processors are involved in the
all-to-all communication. The MPI/MPI model effectively replaces a single all-to-all communication involving Nz ·
Nxy processors in a single-level MPI computation with Nxy simultaneous and independent all-to-all communications
with each involving Nz processors. Note that these Nxy different all-to-all communications involve different sets of
processors and proceed simultaneously in time. To demonstrate the extremely high scalability these multilevel
models have achieved, in Fig. 11 we plot the parallel speedup (a) and the parallel efficiency (b) of the MPI/MPI
model as a function of the number of processors on the Compaq Alpha cluster at PSC for a fixed problem size with
300,000,000 degrees of freedom (turbulent flow past cylinder at Reynolds number Re = 10,000). This multilevel
model has achieved over 95% parallel efficiency on 1024 processors and over 85% parallel efficiency on 1536
processors.

2) For identical configurations, MPI/MPI model demonstrates a slightly superior performance compared with
MPI/OpenMP in current implementations. This performance difference is attributed to several factors. First, the
performances of the MPI and OpenMP libraries play an important role. MPI implementations have become very
mature and demonstrated very high performances on almost all platforms; OpenMP, on the other hand, is relatively
new, and there is room for performance improvement on many platforms. Other unfavorable factors for OpenMP are
the thread management overhead, which tends to increase significantly as the number of threads increases, and the
memory bandwidth contention among threads since they run on the same node (see Ref. 5 for detailed discussions
on the influence of these factors on OpenMP).

Table 4  Wall time/step of MPI/MPI and MPI/OpenMP models on 32 processors for the cylinder flow
problem in Sec. VI.A.  First level: 16 processors; Second level: 2 processors.

MPI/MPI
Wall time/step (s)

MPI/OpenMP
Wall time/step (s)

IA64 (NCSA) 6.31 7.29
IBM SP3 (SDSC) 3.55 4.54
Compaq Alpha (PSC) 1.91 2.32

3) From the applications perspective, the Compaq Alpha cluster at PSC yields the best performance among the
three platforms we have benchmarked. This is evident from the wall clock timing data in Table 4 of both models on
a total of 32 processors on all three platforms. Our CFD simulations using up to 1536 processors on PSC Compaq
cluster, up to 512 processors on SDSC SP3 and up to 256 processors on the NCSA IA64 cluster, demonstrate a
relative performance ratio of these platforms similar to that reflected in Table 4 on 32 processors. The PSC Compaq
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cluster is about 2-3 times faster than the SDSC SP3, and the SP3 is roughly twice as fast as the IA64 cluster (or a
little less).
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